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A Time–Frequency Application With the
Stokes–Woodward Technique

T. Elfouhaily, S. Guignard, H. Branger, D. R. Thompson, B. Chapron, and D. Vandemark

Abstract—In a recent paper, we have generalized Woodward’s
theorem and applied it to the case of random signals jointly modu-
lated in amplitude and frequency. This generalization yields a new
spectral technique to estimate the amount of energy due to mode
coupling without calling for higher order statistics. Two power
spectra are detected; the first is related to the independent modes,
and the second contains extra energy caused by mode coupling.
This detection is now extended from frequency to time–frequency
domain. A comparison between a wavelet transform and our time–
frequency technique shows good agreement along with new insight
into the time occurrence of the nonlinearities or mode coupling.
An application to water surface waves is given in this letter as an
example.

Index Terms—Amplitude modulation–frequency modulation
(AM-FM), horizontal asymmetry, instantaneous amplitude,
instantaneous frequency, mode coupling, nonlinear hydrodynamic
processes, time–frequency distributions, vertical asymmetry,
wave–wave interaction, wind–waves.

I. INTRODUCTION

I N a recent paper [1], we presented a new technique called
the Stokes–Woodward technique that quantifies the amount

of energy caused by nonlinear mode coupling. The starting point
is a theorem stated by Woodward [2]–[4] that approximates
the spectrum of frequency-modulated signals by the probability
density function (pdf) of the instantaneous frequencies

(1)

with being a constant amplitude anda central or carrier fre-
quency. A recent application of this theorem was successfully
implemented in the study of delay and Doppler effects in bistat-
ically reflected electromagnetic signals from the ocean surface
[5]. We generalized this theorem in [1] to include joint ampli-
tude (AM) and frequency (FM) modulations. A comparison was
made of this new development with experimental data collected
in a wind–wave tank. Two spectra were identified in addition to
the traditional Fourier spectrum; the “bare” and the “dressed”
spectra. The bare spectrum is obtained under no mode coupling
conditions, or no wave–wave interactions in case of water waves.
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This can be understood as the occurrence of a family of random
fundamental frequencies. The dressed spectrum, however, de-
picts the observable energy when mode coupling or wave–wave
interactions are present and, therefore, can be interpreted as the
energy augmentation due to a family of random harmonics. One
other advantage of the Stokes–Woodward technique presented
in [1] is to use only two-dimensional (2-D) joint pdfs (ampli-
tude/frequency, asymmetry/ frequency) to quantify the amount
of spectral energy due to nonlinearities as the use of a bispec-
tral approach requires the evaluation of three-dimensional (3-D)
histograms(asymetry/amplitude/frequency).Ataminimum, this
technique provides an explicit analytical expression of the spec-
trum that might be of use for further developments.

In the present letter, we show that the Stokes–Woodward
technique can also be used to trace spectral energy in time.
In this case, a new time–frequency technique is born, which
detects wave occurrences in time. This transformation carries
more information than a traditional wavelet transform. Three
histograms estimated from the data enter into the study of local
events. This time–frequency traceability is amenable to detect
occurrences of mode coupling. Therefore, nonlinear packets
can be detected in both frequency and time.

II. SUMMARY OF THE STOKES–WOODWARD TECHNIQUE

A. Statistical Modulation

As presented in [2], a first generalization of Woodward’s the-
orem reduces to what we call the “bare” spectrum of a process
jointly modulated in frequency and in amplitude under the con-
dition of high modulation indexes

(2)

where is the joint pdf of the instantaneous amplitude
and frequency. This approximation is very practical and requires
the estimation of a 2-D histogram from the available data. How-
ever, the assumption of high modulation index is equivalent to
a slow modulation, this means that this practicality is gained at
the expense of neglecting the temporal modulations of the am-
plitude and frequency at smaller time-scales than the dominant
period. On the other hand, it is easily shown that the right-hand
side of (2) is an exact formulation for the spectrum of a random
process of this form

(3)

where , , and are three time-independent random variables.
The amplitude and the pulsation can be statisti-
cally dependent, while is a uniformly distributed phase and
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independent of these other variables. This requirement on the
uniformity of the phase guarantees that the signal is statistically
stationary and, therefore, that the autocorrelation and the spec-
tral functions are univariate.

In other words, the high-index approximation that leads to (2)
is equivalent to interpreting the temporal modulations as slow
and random from one period to the next, while the instantaneous
amplitude and frequency are assumed constant within a domi-
nant time period. The “bare” subscript in (2) refers to the fact
that the process in (3) has lost all nonlinearity or phase coupling
of harmonics within one realization of the random variables.

B. Temporal and Statistical Modulation

The high-index limit in (2) is very illustrative. The time mod-
ulation present in (2) is now replaced by a random modulation
as in (3) but expressed as follows:

(4)

where the time dependence is explicitly shown in addition to
the implicit random dependence of all the parameters except
the time variable. The key representation of our technique is in
the time dependence of the modulation that can be expanded in
Fourier series around the random frequencyas

(5a)

(5b)

The signal in (4) can be further expanded keeping only terms of
linear order in the parameters, , , and to find a more
poignant form given by ( being a random variable)

(6)

where the (in time varying) coefficients and of the second
harmonic terms in (6) are related to the coefficients in (5) (see
[1]). We remind the reader that all parameters in (6) are random
variables except the time variable. The random variablesand

explain the asymmetries of the waveform with respect to the
horizontal and vertical axes, respectively, and hence nonlineari-
ties. These asymmetries appear in a random manner on the scale
of the period of the wave as depicted by the random amplitude

and random frequency.
As explained in [1], the total spectrum of the signal in (6) is

then what we call the dressed spectrum and is given by

(7)

which is the sum of the “bare” spectrum and a nonlinear contri-
bution to the spectral energy [and as defined in (6)]

(8)
The 2-D probability density distributions in (2) and in (8) are

different and are to be estimated from the time series itself if
they are not knowna priori. The surface elevation time series
provides, thanks to the zero-crossing technique, time series of

, , and the instantaneous frequency. From those time series,
one can easily compute the number of data points

corresponding to, and .
being the number of points of the series inand we have

(9)

Discretized pdfs are obtained this way. We associate this ex-
cess spectrum in (8) with terms added to the bare spectrum as
contributing to the energy increase at higher frequencies due
to the nonlinearities or mode coupling. This energy augmen-
tation, therefore, provides the difference between the bare and
the dressed spectra as originally introduced and discussed in [6].
The difference between bare and dressed spectra as given in (8)
can also be assimilated with the bicoherence function of phase
coupling as introduced by [7] and utilized by [8]. Indeed, en-
ergy of phase coupling to second order is another manifestation
of the bispectrum defined as the Fourier transform of the skew-
ness function using a third order cumulant. More details about
the link between bispectral analysis and the Stokes–Woodward
technique can be found in [1]. However, as mentioned in [1], the
quantification of the bispectrum requires the estimation of two
3-D histograms whose evaluations are CPU intensive and can
be very unstable.

V. CONCLUSION

An extension to our Stokes–Woodward technique is pre-
sented where the time dependence is added to the spectral
formulation developed in [1]. Our original method consisted
of generalizing Woodward’s theorem by including random
amplitude modulations in addition to frequency modulations.
The original theorem stated that a good approximation of
the energy spectrum of a frequency modulated signal is the
probability density function of the instantaneous frequencies
when the index of modulation is high. Our generalization
simply starts by including the random amplitude modulation
that yields a simple spectrum expressed as a single integral
over the instantaneous amplitudes and the joint distribution
of amplitude and frequency as shown in (2). It is noted that
this spectrum is devoid of any nonlinearity or mode coupling
because over the scale of a characteristic period, the wave is
considered as simply harmonic (a sine wave). Asymmetries in
the wave profile must be introduced in order to capture residual
energy (8) not explained by the “bare” spectrum. To account for
this residual energy, we have proposed a second generalization
of Woodward’s theorem that utilizes a Stokes-like waveform in
which all the parameters are random except the time variable.
The total spectrum is termed the “dressed” spectrum. Both
spectra were compared to a standard Fourier spectrum in Fig. 1.
Our current extension explores the time dependence of the
spectral analysis. It is shown that the bare time–frequency
distribution defined in (10) and illustrated in Fig. 2 is in good
agreement with standard Wavelet analysis. The appearance of
wave groups is detected. The novel dressed time–frequency
distribution as defined in (12) provides a robust estimator of
the importance of mode coupling and its time dependence.
We believe that our Stokes–Woodward technique has broad
relevance for understanding the physics of nonlinear processes
even beyond the example of surface waves discussed in the
present letter.
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